Fiber tractography for finite-element modeling of transversely isotropic biological tissues of arbitrary shape using computational fluid dynamics

نویسندگان

  • Joshua Inouye
  • Geoffrey Handsfield
  • Silvia Blemker
چکیده

Fiber tractography is useful for studying a variety of biological phenomena associated with transversely isotropic tissues, in which fibers serve to provide functional strength along a specific axis. One useful application of fiber tractography is finite-element analysis (FEA) studies. Here, we present a method utilizing computational fluid dynamics (CFD) for efficiently determining fiber trajectories in a transversely isotropic material with arbitrary structures of any complexity (such as those determined from biomedical imaging). We demonstrate assignment of fiber directions to FEA mesh by registration with the CFD mesh. Sensitivity analysis on various solver settings, flow characteristics, and material parameters shows less than 2 degrees of average deviation from the nominal fiber vectors if the Reynolds number is <1 and the flow is laminar and incompressible with our nominal fluid properties (viscosity of 1Pa-s and density of 1g/cm). Flow guides can be used to help match fiber trajectories to experimental or anatomical observations, such as twisting in the Achilles tendon. This method also provides an elegant solution to determining fiber tracts in muscles that intertwine with each other, such as in the soft palate complex. For FEA studies, this method enables efficient determination and assignment of fiber directions to any finite-element mesh.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Solution for a Two-Layer Transversely Isotropic Half-Space Affected by an Arbitrary Shape Dynamic Surface Load

The dynamic response of a transversely isotropic, linearly elastic layer bonded to the surface of a half-space of a different transversely isotropic material under arbitrary shape surface loads is considered. With the help of displacements and stresses Green’s functions, an analytical formulation is presented for the determination of the displacements and stresses at any point in both surface l...

متن کامل

Coupled BE-FE Scheme for Three-Dimensional Dynamic Interaction of a Transversely Isotropic Half-Space with a Flexible Structure

The response of structures bonded to the surface of a transversely isotropic half-space (TIHS) under the effect of time-harmonic forces is investigated using a coupled FE-BE scheme. To achieve this end, a Finite Element program has been developed for frequency domain analysis of 3D structures, as the first step. The half-space underlying the structure is taken into consideration using a Boundar...

متن کامل

A fiber-reinforced Transversely Isotropic Constitutive Model for Liver Tissue

Biomechanical properties of soft tissue, such as liver, are important in modeling computer aided surgical procedures. Experimental evidences show that liver tissue is transversely isotropic. In this article, considering the liver tissue as an incompressible fiber-reinforced composite with one family of fibers, an exponential strain energy function (SEF) is proposed. The proposed SEF is based on...

متن کامل

Unsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture

3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...

متن کامل

Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms

A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015